
 

 

  

Abstract—The Concept of Distributed System made life easier 
to communicate and share resources from any other system with 
the help of network. Due to the emergence of Distributed system, 
Data Security has become an increasing concern, and 
respectively attacks related to hardware mechanism have 
emerged. However the researchers have implemented so many 
techniques for hardware encryption and authentication 
mechanisms as a means of addressing this security issues. Thus, 
no such techniques have been produced for Distributed Shared 
Memory (DSM) multiprocessors. Although we have many 
proposed approaches for uniprocessor and symmetric 
Multiprocessor (SMP) systems, any of those approaches are not 
useful for DSMs. In this work we use signcryption technique to 
provide effective encryption and authentication of the data in 
DSM systems.  
 

Keywords—Distributed Shared Memory, Data Security, 
Encryption, signcryption, and Authentication.  

I. INTRODUCTION 

ecurity is the prominent factor in the design of modern 
computer systems, and many researchers have recently 

started to collect information about tamper-resistant execution 
environments as a means to protect the privacy and integrity of 
sensitive data in these systems. Providing a secure 
environment has become more challenging with the increase 
of hardware attacks, such as power analysis, timing, snooping 
devices which can be attached to various buses [7, 8]. Because 
of such attacks, software-based approaches for security are no 
longer enough since sensitive information used by security 
software, such as encryption keys themselves, can be 
compromised because they are kept as unencrypted program 
variables stored in the main memory and transmitted over the 
system bus.  

 
Since software-based security mechanisms are themselves 

vulnerable to hardware attacks, that’s why hardware-based 
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security strategies are required. This hardware support has 
been proposed in the form of memory encryption to protect the 
confidentiality of data and memory authentication which leads 
to secure the integrity of data [5, 6, 12, 13, 16, 17, 18, 21, 23, 
24, 25]. With this type of data protection, many important 
security issues in computing, such as Digital Rights 
Management (DRM) violations, software piracy, and reverse 
engineering of code, can be addressed effectively. One 
important class of systems that will require tamper- resistant 
designs for data secrecy and integrity are Distributed Shared 
Memory (DSM) Multiprocessors. [1] 

 
Now-a-days as almost all the companies are using 

large-scale DSM systems is in the context of utility or 
on-demand computing so the company owning large systems 
will host computational and storage resources of the system to 
customers who want to utilize their IT operations. For 
example, DSM systems such as the HP Superdome are already 
being used to offer on-demand computing services [15] to a 
variety of users. Because large DSMs are powerful but 
expensive, customers often run critical applications which 
access and store confidential corporate data (e.g. financial 
data, product in- formation, client records, etc.) on them. As 
the utility computing model grows in popularity, a large no of 
companies will adopt this model, and DSMs will host a wider 
range of applications using many types of sensitive data. In 
addition, DSM will be the powerful architecture of these 
systems since SMP cannot scale to large systems easily. Since 
these DSM systems are located in a physically remote 
location, which makes customers often very concerned about 
the privacy and integrity of their computations, particularly 
against hardware attacks that may be very hard to detect or 
trace. For Industries data privacy is one of the major deals, 
which leads fast adoption of the on-demand computing model 
[4].  

 
This concern may cause customers to acquire on-demand 

computing providers to utilize tamper-resistant mechanisms in 
their DSMs. We note that it is unlikely for the utility 
computing provider itself to be malicious, as this would create 
a poor business model. Rather, a large-scale DSM system 
owned by a corporation will likely be protected with relatively 
tight physical security that restricts system access to select 
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employees. However, lessons from history have taught us that 
it is unlikely that this single layer of security would be fail- 
proof. For example, despite the relatively good physical 
security protection and limited access for Automatic Teller 
Machines, there have been repeated cases of ATM fraud by 
some supposedly trusted employees [2]. In one case, an 
employee inserted a PC into an ATM machine to monitor and 
steal customer accounts and PINs. DSMs used for on-demand 
computing are in a similar situation in that the main 
ingredients that are conducive for physical tampering are 
there.  First, DSMs (like ATMs) store highly valuable 
information belonging to many customers. For DSMs, this 
information may include financial data, product information, 
and client records. Second, the financial motivation to perform 
an attack can be large because stolen information is valuable to 
other corporations (corporate espionage) or criminals (identity 
theft). Finally, there exist some forms of attacks that hardly 
leave any traces. For example, physically inserting a snooping 
device in a DSM would be quite easy due to the exposed 
interconnection at the back of server racks. USB drive-sized 
devices with multi-GB storage can likely be attached and 
removed in a matter of seconds without shutting down the 
system, and without leaving visible traces. Thus, many 
corporations will likely wish to add another, difficult to break, 
layer of protection for the security of their data in the form of 
tamper-resistant DSM systems.  

 
Architectural support for data secrecy and integrity has been 

studied extensively by researchers for uniprocessor systems 
[5, 6, 12, 13, 17, 18, 21, 23, 24], and more recently for 
Symmetric Multi-Processor (SMP) systems [16, 25].  

 
Unfortunately, such support for DSM systems has not yet 

been studied in detail. Uniprocessor schemes provide data 
encryption and authentication only for processor-memory 
communication and the main memory but do not address data 
protection for processor-processor communication present in 
multiprocessor systems. Proposals for secure SMP systems 
include encryption and authentication mechanisms for 
processor-processor communication, but these mechanisms 
rely on the assumption that each processor can observe every 
coherence transaction in the system, which is satisfied due to 
the single shared bus in the system. 

  
This assumption cannot be made in DSMs, where 

communication is point- to-point rather than through 
broadcast mechanisms. As a result, new techniques for DSMs 
are needed. The first contribution of this paper is an analysis of 
the security requirements for protecting DSM systems against 
hardware attacks. The findings of this analysis are that 
passive/eavesdropping attacks are more likely to be attempted 
because they are non-intrusive and leave very few (if any) 

traces. Active attacks that modify coherence messages and 
alter the behavior of the DSMs are less likely to be attempted, 
especially if the system is augmented with the ability to detect 
them. Therefore, we seek to prevent passive attacks from 
succeeding, and we simply detect and report active attacks. To 
achieve this, we find that different coherence protocol 
messages and different parts of a message need to be protected 
differently: with both encryption and authentication, with 
authentication only, or with no protection. One possible 
approach to create a secure DSM is to provide direct 
encryption and authentication, in which direct encryption (or 
decryption) and Message Authentication Code (MAC) 
generation (or verification) are performed for each coherence 
message sent (or received). However, this approach would 
directly add cryptographic latencies to the already problematic 
communication latencies in DSM systems. Therefore, our 
second contribution is a new combined counter-mode 
encryption/authentication scheme that hides much of the 
cryptographic latencies due to protecting processor-processor 
communication. Our scheme relies on two essential 
techniques. First, we observe that if communicating 
processors share the same communication counter, they can 
pre-generate one-time pads used for message encryption and 
decryption. Hence, to hide encryption/decryption latencies, we 
use per-processor pair communication counters that are 
incremented asynchronously after each message send/receive. 
Secondly, we also maintain data integrity through the use of 
GCM, a MAC-based authentication technique using a 
combined authenticated-encryption mode [3, 14] to reduce the 
MAC computation latency to only a few cycles after message 
cipher-text is available. Finally, we also show how our 
mechanisms can be seamlessly combined with previously 
proposed processor-memory data protection mechanisms to 
provide system-wide data protection for DSMs. 

II. LITERATURE REVIEW 

Architectural support for data privacy and integrity has been 
studied extensively by researchers for uniprocessor systems 
[5, 6, 12, 13, 17, 18, 21, 23, 24]. These studies assume that 
on-chip storage is secure, while off-chip communication is 
not secure and needs to be protected against passive and 
active hardware attacks. They provide encryption and 
authentication for data in the processor memory 
communication path through direct encryption [6, 12, 13] or 
through counter mode encryption [17, 21, 23, 24]. In counter 
mode, instead of directly encrypting the data, encryption is 
applied to a seed to generate a pad. A seed typically consists 
of the memory block address and a counter.  

To encrypt or decrypt a data block, it is XORed with the 
pad. When a block needs to be fetched from memory, if its 
counter is available on chip, pad generation can be 
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overlapped with DRAM access latency. Counter mode 
encryption’s security relies on the uniqueness of the 
pad/counter each time it is used for encryption (through 
incrementing the counter on each write back), hence it is 
often referred to as a one-time pad scheme. To provide data 
integrity, an authentication mechanism based on a Merkle 
Tree was proposed [5]. The Merkle Tree maintains an 
authentication tree whose leaf nodes are data blocks, and the 
root node is always stored securely on chip. Merkle Trees 
were proposed as a way to prevent replay attacks in which an 
attacker replays a previously observed data value and 
corresponding MAC. Because uniprocessor protection 
mechanisms only apply to processor-memory 
communication, researchers have proposed protection 
schemes for processor-processor communication in 
bus-based Symmetric Multi-Processor (SMP) systems [16, 
25]. The fundamental assumption used for such protection is 
that each processor can observe every coherence transaction 
in the system provided naturally through snooping the bus. 
In this system, each processor maintains a global encryption 
counter or global pad used for processor- processor 
communication. On each bus transaction, each processor 
updates its counter [16], or uses the snooped data to generate 
a new Cipher Block Chaining (CBC) encryption pad [25]. 
The pad is used for both encrypting and authenticating 
processor-processor communication. Unfortunately, neither 
uniprocessor nor SMP protection schemes can be extended 
directly to protect DSM systems. Extending direct 
encryption/authentication for processor-to-processor 
communication would incur a very high performance 
overhead due to the added latencies at the sender side for 
encrypting data and generating MACs, and at the receiver 
side for decrypting data and verifying the MACs. With a 
recent hardware implementation showing an AES latency of 
37ns and MD5 or SHA-1 over 300ns [11], this approach is 
either too costly or not feasible.  

Alternatively, one may imagine an approach in which 
uniprocessor counter-mode encryption is directly extended 
to protect processor-processor communication by treating 
processor-to-processor data transfer similarly to a 
processor-to-memory write back. However, this approach is 
problematic to support due to the need to keep the counters 
in both the sending and receiving processor coherent. For 
example, in response to an intervention to a dirty line, a 
processor flushes the line to the requester, and the flushed 
line would be encrypted by XORing it with a pad obtained 
by incrementing the current counter for the block. This 
increment would trigger invalidation of other cached copies 
of the same counter. In order for the receiving processor to 
decrypt the flushed line, it needs to obtain the new counter 
value for the block. It would do so by sending a read request 
for the cache block that contains the counter, which 
eventually appears as an intervention to the sender 
processor. Hence, the latency for processor-processor 

communication is effectively doubled (obtain data, then its 
counter).  

In addition, the counter communication needs to be 
protected against tampering as well, so it requires 
high-latency authentication. Similar difficulties exist with 
maintaining coherency among nodes in the Merkle tree. It is 
also clear that SMP protection cannot be extended easily for 
protecting DSM systems. The requirement that each 
processor observes all coherence transactions would be 
costly to support in terms of ensuring a global ordering of all 
transactions as well as the large bandwidth requirement 
needed for broadcasting each transaction to all processors. 
Our work in this paper differs from previous approaches in 
that it proposes architectural support for data secrecy and 
integrity in DSM multiprocessors. It does not rely on 
maintaining coherence for counters or the authentication 
tree, and does not require broadcasting of coherence 
transactions. Finally, while the use of Galois/Counter Mode 
(GCM) for processor-memory protection in uniprocessor 
system has been proposed in [23], this paper applies GCM in 
the different context of processor- processor communication 
protection. Hence, the input to GCM is very different than 
that for uniprocessor systems. 

III. SECURITY MODELS 

A. Uniprocessor Security Model 

 
Fig 1: Uniprocessor Security Model 

 
The processor, implemented on a monolithic integrated 

circuit (IC), is assumed to be trusted and protected from 
physical attacks; its internal state cannot be tampered with or 
observed directly by physical means. The processor can 
contain secret information that identifies it and allows it to 
communicate securely with the outside world. This 
information could be a Physical Random Function [27], or the 
secret part of a public key pair protected by a tamper-sensing 
environment [28]. The trusted computing base (TCB) consists 
of the processor chip and optionally1 some core parts of the 
operating system that plays the part of the Nexus in Palladium 
[26] or the security kernel in AEGIS [29]. The processor is 
used in a multitasking environment, which uses virtual 
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memory, and runs mutually mistrusting processes. External 
memory and peripherals are assumed to be untrusted; they 
may be observed and tampered with at will by an adversary. 
The system provides programs with two secure execution 
environments: tamper evident (TE) and private tamper 
resistant (PTR). In the TE environment, the integrity of a 
program’s execution is guaranteed. The PTR environment 
ensures the privacy of instructions and data in addition to 
integrity. Once a program has entered a secure execution 
environment using a special instruction, the TCB protects it 
and provides it with an additional instruction to sign messages 
with the processor’s private key. The resulting signature is 
used to prove to a user that he is seeing the results of a correct 
execution of his program. Since the adversary can attack 
off-chip memory, the processor needs to check that it behaves 
like valid memory. Memory behaves like valid memory if the 
value the processor loads from a particular address is the most 
recent value that it has stored to that address. We therefore 
require memory integrity verification. The TCB needs to 
ensure the integrity of memory accesses before it performs a 
signing operation or stores data into non-private memory 
space. For PTR environments, we additionally have to encrypt 
data values stored in off-chip memory. The encryption and 
decryption of data values can be done by a hardware engine 
placed between the integrity checker and the off-chip memory 
bus, as in AEGIS. We assume that programs are well-written 
and do not leak secrets via memory access patterns. We do not 
handle security issues caused by bugs in an application 
program. 

B. Multiprocessor Security Model 
For multiprocessor shared-memory protection, it is possible 

to apply uniprocessor security schemes, but cache-to-cache 
communications need a different protection scheme. Unlike 
uniprocessor secure computing models, encryption and 
generation of MAC in multiprocessor systems become 
time-critical because a receiving processor stalls to wait for a 
reply. As for authentication of cache-to-cache 
communications, Shi, et al. proposed an authentication 
speculation execution to remove MAC latency from the 
critical path [16]. In this scheme, while the receiver verifies 
using MAC; it speculatively continues to execute using 
un-authenticated data. Those executions are committed only 
after all operands become authenticated. This scheme reduces 
performance overhead by overlapping authentication and CPU 
execution, but each processor needs a complex speculation 
circuit and this scheme is still vulnerable to replay attacks. 
Zhang, et al. used Cipher Block Chaining (CBC) mode in 
which the previous MAC is used to make the next MAC, 
preventing replay attacks [25]. Rogers, et al. pointed out the 
limitation of above schemes on DSM systems and proposed an 
efficient data protection design [1]. By focusing on 
point-to-point communications of the directory-based cache 
coherence protocol, they were able to utilize DSM systems’ 

temporal locality of communications, which means a 
processor communicates with a relatively small number of 
neighboring processors in a short period of time. Such locality 
makes it possible for each processor to have a small table to 
hold counters, resulting in good scalability. 

 

 
Fig 2: Multiprocessor Security Model 

  
Please note that in multiprocessor shared memory 

protection, all processors and related components like the 
memory controller are assumed to share the same secret key. 
This can be done through the fabrication from factory or 
runtime distribution as described in [30]. Therefore, even if an 
ASIC or FPGA is hooked up to the system and pretends to be a 
peer processor in the multiprocessor systems, it cannot break 
the privacy and integrity of the system since it is practically 
impossible for an illegal device to have the same secret key. 

C. Signcryption 
Signcryption proposed by Zheng [31] at Crypto'97 is a 

public key or asymmetric cryptographic method that provides 
simultaneously both message confidentiality and 
unforgeability at a lower computational and communication 
overhead than doing signature and public key encryption 
separately. Recent progress in the security analysis of 
signcryption indicates that the specific instantiations of 
signcryption demonstrated in [31] are indeed secure in a very 
strong sense. More specifically, it has been proven in [32, 33] 
that these schemes are secure against adaptive chosen 
ciphertext attacks and existentially unforgeable against 
adaptive chosen message attacks, both in the random oracle 
model, relative to Gap Diffie-Hellman and Strong Discrete 
Logarithm problems respectively. 

It should be emphasized that the signcryption schemes 
could be proven secure without any significant changes of the 
schemes. However to simplify analysis, [32, 33] modified the 
original schemes slightly by introducing an extra one-way 
hashing into the signcryption and unsigncryption operations.  
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D. Signcryption Algorithm  
The signcryption algorithm SC (.) is run by the sender S. 

The common parameter cp, the sender S's secret key xS, and 
the receiver R's public key yR and bind info containing the 
sender and receiver's public keys (yS; yR) are provided as 
input to this algorithm. We remark that including bind info in 
the input to the signcryption algorithm was first suggested in 
[31] and it was shown in [32, 33] that bind info is necessary for 
the signcryption to be proven secure. As pointed out in [31], 
bind info could contain strings that uniquely identify the 
sender S and the receiver R or hash values of the public key of 
each party. However we assume in this report that bind info 
contains the concatenation of yS with yR. 

A detailed description of SC (cp; m; xS; yR; bind info) is as 
follows.   
Signcryption Algorithm SC (cp; m; xS; yR; bind info)   

1. Pick x uniformly at random from [1; …. ; q -1]  
2. w = yx R mod p  
3. K = G(w)  
4. r = H(m; bind info;w) where bind info =(yS; yR)  
5. s = x=(r + xS) mod q if ‘type1’ is used,  

or  
s = x=(1 + xS . r) mod q if ‘type2’ is used 

6. c = EK(m) 7. Return C = (c; r; s)  
 

E. Unsigncryption 
Now we describe the unsigncryption operation of the 

signcryptext C = (c; r; s) by the receiver R. Note that the 
common parameter cp, the receiver R's secret key xS, and the 
sender S's public key yS and bind info containing the sender 
and receiver's public keys (yS; yR) are provided as input to the 
unsigncryption algorithm USC(.). [34]   

Unsigncryption Algorithm USC (cp;C; xR; yS; bind info)   
1. Parse C as (c; r; s)  
2. w = (yS . gr)s.xR mod p if ‘type1’ is used,  

or 
w = (g . yrS )s.xR mod p if ‘type2’ is used  

3. K = G(w)  
4. m = DK(c)  
5. If r =2 [0; …; q ¡ 1]  

or 
s =2 [1; ….; q ¡ 1] then return `Rej (reject)'  

6. If r = H(m; bind info;w) then return m. Else output `Rej '. 

IV. DSM SECURITY ISSUES  

As mentioned earlier, our goal is to protect DSM systems 
against hardware attacks in the context of on-demand 
computing. We assume that the system has relatively strong 
physical security, but is not immune to attacks by a select few 
employees or other parties who have physical access to the 
machine. Since it is likely that only a few people have physical 

access to the machine, any attacks that leave traces may easily 
provide sufficient information that can lead to the attacker. We 
define a trace as a detectable anomaly of the system behavior; 
Hence, the fundamental assumption is that the goal of an 
attacker is to perform traceless attacks in order to steal 
sensitive data that belongs to the application. We broadly 
categorize hardware attacks into three categories. [1]  

The first category is sabotage attacks in which the attacker’s 
goal is to crash the application or even damage the system. Our 
scheme does not seek to protect against sabotage attacks, 
including application or system crashes, since it is extremely 
difficult to protect the system against such sabotage when the 
attacker has physical access to the machine. On the other hand, 
the attacker lacks the incentive to do so because the attack can 
be easily traced back to him/her, and there is probably little 
financial reward for sabotage attacks. Another category is 
passive attacks in which the attacker’s goal is to eavesdrop on 
processor-processor or processor- memory communication, as 
illustrated in Fig 3.  

An example of this attack is the physical insertion of a 
snooping device onto the exposed interconnects at the back of 
server racks. A small USB drive-sized device with multi-GB 
storage can likely be attached and removed in a matter of 
seconds without shutting down the system if the system can 
recover from temporary link failures. Cable clutter may also 
hide the device from cursory visual inspections. 

 

 
Fig 3: Hardware attacks 

 
Finally, in active attacks, the goal of the attacker is to steal 

sensitive information by modifying coherence messages 
communicated between processors, or data in a node’s local 
memory or on the memory bus. Although active attacks are 
certainly more difficult to perform than passive attacks, we 
cannot rule out the possibility of an attacker attempting them, 
especially if passive attacks are no longer fruitful due to the 
system encrypting all off-chip communication, and if the 
attack does not result in any traces. A coherence message 
typically contains message type, memory block address, 
routing information (source and destination processors), and, 
for data messages, user data. [1]  
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We do not make any assumptions as to the specific abilities 
of attackers to modify signals, so we assume the worst case in 
which the attacker is able to modify any parts of the message. 
We distinguish between attacks that modify application data 
as data spoofing versus ones that modify other information as 
non-data spoofing. The attacker may also be able to replay an 
old message. Finally, the attacker may also modify the 
coherence protocol directory information stored at each node. 

V. RESEARCH APPROACH 

A. Problem Definition 
The emergence of the technology made easy to communicate 
and share resources with the remote devices in a secure way. 
Apart from this simultaneously intruders also become strong 
to break the secure environment to get what they want. There 
are so many techniques have been proposed by many 
researchers to secure the DSM systems. Shi, et al, Zhang, et al, 
Rogers, et al [23, 33, 21] have proposed so many techniques 
even though they are not strong enough to secure the data. The 
primary purpose of this research is to provide protection 
against hardware attacks on data messages in DSM systems. 

To achieve this purpose it is necessary to have a technique 
to encrypt and authenticate data during processor-processor 
data sharing in a network. Here we are not going to show how 
to develop the whole process as it is already explained by Shi, 
et al, Zhang, et al, Rogers, et al [23, 33, 21]. We are going to 
use the technique of signcryption to encrypt and authenticate 
data during processor-processor data transfer over network. 
The signcryption technique is naturally equivalent to both 
encryption and restrictive authentication of data signatures. 
The following are the various mechanisms used to encrypt and 
authenticate data for process-process communication. 

 

 
Fig 4: Direct Encryption and Ciphertext-based MAC 

 
 

 
Fig 5: Pre Generated pads for Encryption 

 
 

 
Fig 6: Pre Generated pads for Encryption and Authentication 

B. Methodology 
In this paper we are going to prove that the technique of 

signcryption used in DSM systems data protection is the best. 
The following illustration shows how the protection of DSM 
systems data is done. 

The flow of the techniques is as follows: Initially the sender 
system a value from the large range of numbers and it will be 
consider as SK. Then the senders public key PK and the value 
SK both will be compute hash of it. This will generate a 
128-bit string KEY. Then the sender system splits the KEY 
two equal halves KEY1 and KEY2 as mentioned in the Fig 7. 
Following that using KEY1 the plain text will be encrypted 
this will generates ciphertext (C) then the system uses KEY2 
for one-way keyed hash function to generate hash message (r), 
system then computes the value of s. System does this using 
the value of SK, her private key SKa, the large prime number q 
and the value of r. s = SK / (r + SKa) mod q. Sender system 
now has three different values, c, r and s. sender then has to 
send these three values to Receiver in order to complete the 
transaction. Sender can do this in a couple of ways. Sender can 
send them all at one time. Sender can also send them at 
separately using secure transmission channels, which would 
increase security. Thus on sender system part, Signcryption of 
the message is done. 

 
Fig 7: Process of Encrypting and authentication data during 

processor-processor data transfer over network 
Once the receiver receives the values sent by the sender, then 
receiver uses the values of r and s, his/her private key SKb, 
sender’s public key PK and P and G to compute a hash which 
would give receiver a 128-bit result. 

 
Fig 8: Process of verify authentication and decryption of  

Data once the data is received by the receiver 
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This 128-bit hash result is then split into two 64-bit halves 
which would give him/her a key pair (KEY1, KEY2). This key 
pair would be identical to the key pair that was generated while 
signcrypting the message. Now receiver system does a 
one-way keyed hash function on ciphertext using the key 
KEY2 and compares the output with the value r receiver 
received from sender. If they match, it means that the data was 
indeed signed and sent by sender, if not receiver will know that 
the message was either not signed by sender or was intercepted 
and modified by an intruder.  

 

VI. CONCLUSION 
This proposed system is to provide a good, efficient method 

for providing security for Distributed Shared Memory data 
from hackers and sent to the destination in a safe manner. 
Signcryption and Unsigncryption techniques have been used 
to make the security system more sophisticated and robust.  
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