

Abstract—The Concept of Distributed System made life easier
to communicate and share resources from any other system with
the help of network. Due to the emergence of Distributed system,
Data Security has become an increasing concern, and
respectively attacks related to hardware mechanism have
emerged. However the researchers have implemented so many
techniques for hardware encryption and authentication
mechanisms as a means of addressing this security issues. Thus,
no such techniques have been produced for Distributed Shared
Memory (DSM) multiprocessors. Although we have many
proposed approaches for uniprocessor and symmetric
Multiprocessor (SMP) systems, any of those approaches are not
useful for DSMs. In this work we use signcryption technique to
provide effective encryption and authentication of the data in
DSM systems.

Keywords—Distributed Shared Memory, Data Security,
Encryption, signcryption, and Authentication.

I. INTRODUCTION

ecurity is the prominent factor in the design of modern
computer systems, and many researchers have recently

started to collect information about tamper-resistant execution
environments as a means to protect the privacy and integrity of
sensitive data in these systems. Providing a secure
environment has become more challenging with the increase
of hardware attacks, such as power analysis, timing, snooping
devices which can be attached to various buses [7, 8]. Because
of such attacks, software-based approaches for security are no
longer enough since sensitive information used by security
software, such as encryption keys themselves, can be
compromised because they are kept as unencrypted program
variables stored in the main memory and transmitted over the
system bus.

Since software-based security mechanisms are themselves

vulnerable to hardware attacks, that’s why hardware-based

F. A. Md. Shafakhatullah Khan is with the Department of Information
Systems, University of Nizwa, Nizwa, Sultanate of Oman, Oman. (phone:
+968 98118903, e-mail: shafakhat@ unizwa.edu.om.)

S. B. Mourad Mohamed Henchiri is with the Department of Information
Systems, University of Nizwa, Nizwa, Sultanate of Oman, Oman. (e-mail:
Mourad@ unizwa.edu.om.)

security strategies are required. This hardware support has
been proposed in the form of memory encryption to protect the
confidentiality of data and memory authentication which leads
to secure the integrity of data [5, 6, 12, 13, 16, 17, 18, 21, 23,
24, 25]. With this type of data protection, many important
security issues in computing, such as Digital Rights
Management (DRM) violations, software piracy, and reverse
engineering of code, can be addressed effectively. One
important class of systems that will require tamper- resistant
designs for data secrecy and integrity are Distributed Shared
Memory (DSM) Multiprocessors. [1]

Now-a-days as almost all the companies are using

large-scale DSM systems is in the context of utility or
on-demand computing so the company owning large systems
will host computational and storage resources of the system to
customers who want to utilize their IT operations. For
example, DSM systems such as the HP Superdome are already
being used to offer on-demand computing services [15] to a
variety of users. Because large DSMs are powerful but
expensive, customers often run critical applications which
access and store confidential corporate data (e.g. financial
data, product in- formation, client records, etc.) on them. As
the utility computing model grows in popularity, a large no of
companies will adopt this model, and DSMs will host a wider
range of applications using many types of sensitive data. In
addition, DSM will be the powerful architecture of these
systems since SMP cannot scale to large systems easily. Since
these DSM systems are located in a physically remote
location, which makes customers often very concerned about
the privacy and integrity of their computations, particularly
against hardware attacks that may be very hard to detect or
trace. For Industries data privacy is one of the major deals,
which leads fast adoption of the on-demand computing model
[4].

This concern may cause customers to acquire on-demand

computing providers to utilize tamper-resistant mechanisms in
their DSMs. We note that it is unlikely for the utility
computing provider itself to be malicious, as this would create
a poor business model. Rather, a large-scale DSM system
owned by a corporation will likely be protected with relatively
tight physical security that restricts system access to select

An Effective Approach of Data Security for
Distributed Shared Memory Multiprocessors

Md. Shafakhatullah Khan1 (Member IAENG), Mourad Mohamed Henchiri2
1, 2 Department of Information Systems,

University of Nizwa, Nizwa, Sultanate of Oman, Oman.

S

Md. Shafakhatullah Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4104-4110

www.ijcsit.com 4104

employees. However, lessons from history have taught us that
it is unlikely that this single layer of security would be fail-
proof. For example, despite the relatively good physical
security protection and limited access for Automatic Teller
Machines, there have been repeated cases of ATM fraud by
some supposedly trusted employees [2]. In one case, an
employee inserted a PC into an ATM machine to monitor and
steal customer accounts and PINs. DSMs used for on-demand
computing are in a similar situation in that the main
ingredients that are conducive for physical tampering are
there. First, DSMs (like ATMs) store highly valuable
information belonging to many customers. For DSMs, this
information may include financial data, product information,
and client records. Second, the financial motivation to perform
an attack can be large because stolen information is valuable to
other corporations (corporate espionage) or criminals (identity
theft). Finally, there exist some forms of attacks that hardly
leave any traces. For example, physically inserting a snooping
device in a DSM would be quite easy due to the exposed
interconnection at the back of server racks. USB drive-sized
devices with multi-GB storage can likely be attached and
removed in a matter of seconds without shutting down the
system, and without leaving visible traces. Thus, many
corporations will likely wish to add another, difficult to break,
layer of protection for the security of their data in the form of
tamper-resistant DSM systems.

Architectural support for data secrecy and integrity has been

studied extensively by researchers for uniprocessor systems
[5, 6, 12, 13, 17, 18, 21, 23, 24], and more recently for
Symmetric Multi-Processor (SMP) systems [16, 25].

Unfortunately, such support for DSM systems has not yet

been studied in detail. Uniprocessor schemes provide data
encryption and authentication only for processor-memory
communication and the main memory but do not address data
protection for processor-processor communication present in
multiprocessor systems. Proposals for secure SMP systems
include encryption and authentication mechanisms for
processor-processor communication, but these mechanisms
rely on the assumption that each processor can observe every
coherence transaction in the system, which is satisfied due to
the single shared bus in the system.

This assumption cannot be made in DSMs, where

communication is point- to-point rather than through
broadcast mechanisms. As a result, new techniques for DSMs
are needed. The first contribution of this paper is an analysis of
the security requirements for protecting DSM systems against
hardware attacks. The findings of this analysis are that
passive/eavesdropping attacks are more likely to be attempted
because they are non-intrusive and leave very few (if any)

traces. Active attacks that modify coherence messages and
alter the behavior of the DSMs are less likely to be attempted,
especially if the system is augmented with the ability to detect
them. Therefore, we seek to prevent passive attacks from
succeeding, and we simply detect and report active attacks. To
achieve this, we find that different coherence protocol
messages and different parts of a message need to be protected
differently: with both encryption and authentication, with
authentication only, or with no protection. One possible
approach to create a secure DSM is to provide direct
encryption and authentication, in which direct encryption (or
decryption) and Message Authentication Code (MAC)
generation (or verification) are performed for each coherence
message sent (or received). However, this approach would
directly add cryptographic latencies to the already problematic
communication latencies in DSM systems. Therefore, our
second contribution is a new combined counter-mode
encryption/authentication scheme that hides much of the
cryptographic latencies due to protecting processor-processor
communication. Our scheme relies on two essential
techniques. First, we observe that if communicating
processors share the same communication counter, they can
pre-generate one-time pads used for message encryption and
decryption. Hence, to hide encryption/decryption latencies, we
use per-processor pair communication counters that are
incremented asynchronously after each message send/receive.
Secondly, we also maintain data integrity through the use of
GCM, a MAC-based authentication technique using a
combined authenticated-encryption mode [3, 14] to reduce the
MAC computation latency to only a few cycles after message
cipher-text is available. Finally, we also show how our
mechanisms can be seamlessly combined with previously
proposed processor-memory data protection mechanisms to
provide system-wide data protection for DSMs.

II. LITERATURE REVIEW

Architectural support for data privacy and integrity has been
studied extensively by researchers for uniprocessor systems
[5, 6, 12, 13, 17, 18, 21, 23, 24]. These studies assume that
on-chip storage is secure, while off-chip communication is
not secure and needs to be protected against passive and
active hardware attacks. They provide encryption and
authentication for data in the processor memory
communication path through direct encryption [6, 12, 13] or
through counter mode encryption [17, 21, 23, 24]. In counter
mode, instead of directly encrypting the data, encryption is
applied to a seed to generate a pad. A seed typically consists
of the memory block address and a counter.

To encrypt or decrypt a data block, it is XORed with the
pad. When a block needs to be fetched from memory, if its
counter is available on chip, pad generation can be

Md. Shafakhatullah Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4104-4110

www.ijcsit.com 4105

overlapped with DRAM access latency. Counter mode
encryption’s security relies on the uniqueness of the
pad/counter each time it is used for encryption (through
incrementing the counter on each write back), hence it is
often referred to as a one-time pad scheme. To provide data
integrity, an authentication mechanism based on a Merkle
Tree was proposed [5]. The Merkle Tree maintains an
authentication tree whose leaf nodes are data blocks, and the
root node is always stored securely on chip. Merkle Trees
were proposed as a way to prevent replay attacks in which an
attacker replays a previously observed data value and
corresponding MAC. Because uniprocessor protection
mechanisms only apply to processor-memory
communication, researchers have proposed protection
schemes for processor-processor communication in
bus-based Symmetric Multi-Processor (SMP) systems [16,
25]. The fundamental assumption used for such protection is
that each processor can observe every coherence transaction
in the system provided naturally through snooping the bus.
In this system, each processor maintains a global encryption
counter or global pad used for processor- processor
communication. On each bus transaction, each processor
updates its counter [16], or uses the snooped data to generate
a new Cipher Block Chaining (CBC) encryption pad [25].
The pad is used for both encrypting and authenticating
processor-processor communication. Unfortunately, neither
uniprocessor nor SMP protection schemes can be extended
directly to protect DSM systems. Extending direct
encryption/authentication for processor-to-processor
communication would incur a very high performance
overhead due to the added latencies at the sender side for
encrypting data and generating MACs, and at the receiver
side for decrypting data and verifying the MACs. With a
recent hardware implementation showing an AES latency of
37ns and MD5 or SHA-1 over 300ns [11], this approach is
either too costly or not feasible.

Alternatively, one may imagine an approach in which
uniprocessor counter-mode encryption is directly extended
to protect processor-processor communication by treating
processor-to-processor data transfer similarly to a
processor-to-memory write back. However, this approach is
problematic to support due to the need to keep the counters
in both the sending and receiving processor coherent. For
example, in response to an intervention to a dirty line, a
processor flushes the line to the requester, and the flushed
line would be encrypted by XORing it with a pad obtained
by incrementing the current counter for the block. This
increment would trigger invalidation of other cached copies
of the same counter. In order for the receiving processor to
decrypt the flushed line, it needs to obtain the new counter
value for the block. It would do so by sending a read request
for the cache block that contains the counter, which
eventually appears as an intervention to the sender
processor. Hence, the latency for processor-processor

communication is effectively doubled (obtain data, then its
counter).

In addition, the counter communication needs to be
protected against tampering as well, so it requires
high-latency authentication. Similar difficulties exist with
maintaining coherency among nodes in the Merkle tree. It is
also clear that SMP protection cannot be extended easily for
protecting DSM systems. The requirement that each
processor observes all coherence transactions would be
costly to support in terms of ensuring a global ordering of all
transactions as well as the large bandwidth requirement
needed for broadcasting each transaction to all processors.
Our work in this paper differs from previous approaches in
that it proposes architectural support for data secrecy and
integrity in DSM multiprocessors. It does not rely on
maintaining coherence for counters or the authentication
tree, and does not require broadcasting of coherence
transactions. Finally, while the use of Galois/Counter Mode
(GCM) for processor-memory protection in uniprocessor
system has been proposed in [23], this paper applies GCM in
the different context of processor- processor communication
protection. Hence, the input to GCM is very different than
that for uniprocessor systems.

III. SECURITY MODELS

A. Uniprocessor Security Model

Fig 1: Uniprocessor Security Model

The processor, implemented on a monolithic integrated

circuit (IC), is assumed to be trusted and protected from
physical attacks; its internal state cannot be tampered with or
observed directly by physical means. The processor can
contain secret information that identifies it and allows it to
communicate securely with the outside world. This
information could be a Physical Random Function [27], or the
secret part of a public key pair protected by a tamper-sensing
environment [28]. The trusted computing base (TCB) consists
of the processor chip and optionally1 some core parts of the
operating system that plays the part of the Nexus in Palladium
[26] or the security kernel in AEGIS [29]. The processor is
used in a multitasking environment, which uses virtual

Md. Shafakhatullah Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4104-4110

www.ijcsit.com 4106

memory, and runs mutually mistrusting processes. External
memory and peripherals are assumed to be untrusted; they
may be observed and tampered with at will by an adversary.
The system provides programs with two secure execution
environments: tamper evident (TE) and private tamper
resistant (PTR). In the TE environment, the integrity of a
program’s execution is guaranteed. The PTR environment
ensures the privacy of instructions and data in addition to
integrity. Once a program has entered a secure execution
environment using a special instruction, the TCB protects it
and provides it with an additional instruction to sign messages
with the processor’s private key. The resulting signature is
used to prove to a user that he is seeing the results of a correct
execution of his program. Since the adversary can attack
off-chip memory, the processor needs to check that it behaves
like valid memory. Memory behaves like valid memory if the
value the processor loads from a particular address is the most
recent value that it has stored to that address. We therefore
require memory integrity verification. The TCB needs to
ensure the integrity of memory accesses before it performs a
signing operation or stores data into non-private memory
space. For PTR environments, we additionally have to encrypt
data values stored in off-chip memory. The encryption and
decryption of data values can be done by a hardware engine
placed between the integrity checker and the off-chip memory
bus, as in AEGIS. We assume that programs are well-written
and do not leak secrets via memory access patterns. We do not
handle security issues caused by bugs in an application
program.

B. Multiprocessor Security Model
For multiprocessor shared-memory protection, it is possible

to apply uniprocessor security schemes, but cache-to-cache
communications need a different protection scheme. Unlike
uniprocessor secure computing models, encryption and
generation of MAC in multiprocessor systems become
time-critical because a receiving processor stalls to wait for a
reply. As for authentication of cache-to-cache
communications, Shi, et al. proposed an authentication
speculation execution to remove MAC latency from the
critical path [16]. In this scheme, while the receiver verifies
using MAC; it speculatively continues to execute using
un-authenticated data. Those executions are committed only
after all operands become authenticated. This scheme reduces
performance overhead by overlapping authentication and CPU
execution, but each processor needs a complex speculation
circuit and this scheme is still vulnerable to replay attacks.
Zhang, et al. used Cipher Block Chaining (CBC) mode in
which the previous MAC is used to make the next MAC,
preventing replay attacks [25]. Rogers, et al. pointed out the
limitation of above schemes on DSM systems and proposed an
efficient data protection design [1]. By focusing on
point-to-point communications of the directory-based cache
coherence protocol, they were able to utilize DSM systems’

temporal locality of communications, which means a
processor communicates with a relatively small number of
neighboring processors in a short period of time. Such locality
makes it possible for each processor to have a small table to
hold counters, resulting in good scalability.

Fig 2: Multiprocessor Security Model

Please note that in multiprocessor shared memory

protection, all processors and related components like the
memory controller are assumed to share the same secret key.
This can be done through the fabrication from factory or
runtime distribution as described in [30]. Therefore, even if an
ASIC or FPGA is hooked up to the system and pretends to be a
peer processor in the multiprocessor systems, it cannot break
the privacy and integrity of the system since it is practically
impossible for an illegal device to have the same secret key.

C. Signcryption
Signcryption proposed by Zheng [31] at Crypto'97 is a

public key or asymmetric cryptographic method that provides
simultaneously both message confidentiality and
unforgeability at a lower computational and communication
overhead than doing signature and public key encryption
separately. Recent progress in the security analysis of
signcryption indicates that the specific instantiations of
signcryption demonstrated in [31] are indeed secure in a very
strong sense. More specifically, it has been proven in [32, 33]
that these schemes are secure against adaptive chosen
ciphertext attacks and existentially unforgeable against
adaptive chosen message attacks, both in the random oracle
model, relative to Gap Diffie-Hellman and Strong Discrete
Logarithm problems respectively.

It should be emphasized that the signcryption schemes
could be proven secure without any significant changes of the
schemes. However to simplify analysis, [32, 33] modified the
original schemes slightly by introducing an extra one-way
hashing into the signcryption and unsigncryption operations.

Md. Shafakhatullah Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4104-4110

www.ijcsit.com 4107

D. Signcryption Algorithm
The signcryption algorithm SC (.) is run by the sender S.

The common parameter cp, the sender S's secret key xS, and
the receiver R's public key yR and bind info containing the
sender and receiver's public keys (yS; yR) are provided as
input to this algorithm. We remark that including bind info in
the input to the signcryption algorithm was first suggested in
[31] and it was shown in [32, 33] that bind info is necessary for
the signcryption to be proven secure. As pointed out in [31],
bind info could contain strings that uniquely identify the
sender S and the receiver R or hash values of the public key of
each party. However we assume in this report that bind info
contains the concatenation of yS with yR.

A detailed description of SC (cp; m; xS; yR; bind info) is as
follows.
Signcryption Algorithm SC (cp; m; xS; yR; bind info)

1. Pick x uniformly at random from [1; …. ; q -1]
2. w = yx R mod p
3. K = G(w)
4. r = H(m; bind info;w) where bind info =(yS; yR)
5. s = x=(r + xS) mod q if ‘type1’ is used,

or
s = x=(1 + xS . r) mod q if ‘type2’ is used

6. c = EK(m) 7. Return C = (c; r; s)

E. Unsigncryption
Now we describe the unsigncryption operation of the

signcryptext C = (c; r; s) by the receiver R. Note that the
common parameter cp, the receiver R's secret key xS, and the
sender S's public key yS and bind info containing the sender
and receiver's public keys (yS; yR) are provided as input to the
unsigncryption algorithm USC(.). [34]

Unsigncryption Algorithm USC (cp;C; xR; yS; bind info)
1. Parse C as (c; r; s)
2. w = (yS . gr)s.xR mod p if ‘type1’ is used,

or
w = (g . yrS)s.xR mod p if ‘type2’ is used

3. K = G(w)
4. m = DK(c)
5. If r =2 [0; …; q ¡ 1]

or
s =2 [1; ….; q ¡ 1] then return `Rej (reject)'

6. If r = H(m; bind info;w) then return m. Else output `Rej '.

IV. DSM SECURITY ISSUES

As mentioned earlier, our goal is to protect DSM systems
against hardware attacks in the context of on-demand
computing. We assume that the system has relatively strong
physical security, but is not immune to attacks by a select few
employees or other parties who have physical access to the
machine. Since it is likely that only a few people have physical

access to the machine, any attacks that leave traces may easily
provide sufficient information that can lead to the attacker. We
define a trace as a detectable anomaly of the system behavior;
Hence, the fundamental assumption is that the goal of an
attacker is to perform traceless attacks in order to steal
sensitive data that belongs to the application. We broadly
categorize hardware attacks into three categories. [1]

The first category is sabotage attacks in which the attacker’s
goal is to crash the application or even damage the system. Our
scheme does not seek to protect against sabotage attacks,
including application or system crashes, since it is extremely
difficult to protect the system against such sabotage when the
attacker has physical access to the machine. On the other hand,
the attacker lacks the incentive to do so because the attack can
be easily traced back to him/her, and there is probably little
financial reward for sabotage attacks. Another category is
passive attacks in which the attacker’s goal is to eavesdrop on
processor-processor or processor- memory communication, as
illustrated in Fig 3.

An example of this attack is the physical insertion of a
snooping device onto the exposed interconnects at the back of
server racks. A small USB drive-sized device with multi-GB
storage can likely be attached and removed in a matter of
seconds without shutting down the system if the system can
recover from temporary link failures. Cable clutter may also
hide the device from cursory visual inspections.

Fig 3: Hardware attacks

Finally, in active attacks, the goal of the attacker is to steal

sensitive information by modifying coherence messages
communicated between processors, or data in a node’s local
memory or on the memory bus. Although active attacks are
certainly more difficult to perform than passive attacks, we
cannot rule out the possibility of an attacker attempting them,
especially if passive attacks are no longer fruitful due to the
system encrypting all off-chip communication, and if the
attack does not result in any traces. A coherence message
typically contains message type, memory block address,
routing information (source and destination processors), and,
for data messages, user data. [1]

Md. Shafakhatullah Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4104-4110

www.ijcsit.com 4108

We do not make any assumptions as to the specific abilities
of attackers to modify signals, so we assume the worst case in
which the attacker is able to modify any parts of the message.
We distinguish between attacks that modify application data
as data spoofing versus ones that modify other information as
non-data spoofing. The attacker may also be able to replay an
old message. Finally, the attacker may also modify the
coherence protocol directory information stored at each node.

V. RESEARCH APPROACH

A. Problem Definition
The emergence of the technology made easy to communicate
and share resources with the remote devices in a secure way.
Apart from this simultaneously intruders also become strong
to break the secure environment to get what they want. There
are so many techniques have been proposed by many
researchers to secure the DSM systems. Shi, et al, Zhang, et al,
Rogers, et al [23, 33, 21] have proposed so many techniques
even though they are not strong enough to secure the data. The
primary purpose of this research is to provide protection
against hardware attacks on data messages in DSM systems.

To achieve this purpose it is necessary to have a technique
to encrypt and authenticate data during processor-processor
data sharing in a network. Here we are not going to show how
to develop the whole process as it is already explained by Shi,
et al, Zhang, et al, Rogers, et al [23, 33, 21]. We are going to
use the technique of signcryption to encrypt and authenticate
data during processor-processor data transfer over network.
The signcryption technique is naturally equivalent to both
encryption and restrictive authentication of data signatures.
The following are the various mechanisms used to encrypt and
authenticate data for process-process communication.

Fig 4: Direct Encryption and Ciphertext-based MAC

Fig 5: Pre Generated pads for Encryption

Fig 6: Pre Generated pads for Encryption and Authentication

B. Methodology
In this paper we are going to prove that the technique of

signcryption used in DSM systems data protection is the best.
The following illustration shows how the protection of DSM
systems data is done.

The flow of the techniques is as follows: Initially the sender
system a value from the large range of numbers and it will be
consider as SK. Then the senders public key PK and the value
SK both will be compute hash of it. This will generate a
128-bit string KEY. Then the sender system splits the KEY
two equal halves KEY1 and KEY2 as mentioned in the Fig 7.
Following that using KEY1 the plain text will be encrypted
this will generates ciphertext (C) then the system uses KEY2
for one-way keyed hash function to generate hash message (r),
system then computes the value of s. System does this using
the value of SK, her private key SKa, the large prime number q
and the value of r. s = SK / (r + SKa) mod q. Sender system
now has three different values, c, r and s. sender then has to
send these three values to Receiver in order to complete the
transaction. Sender can do this in a couple of ways. Sender can
send them all at one time. Sender can also send them at
separately using secure transmission channels, which would
increase security. Thus on sender system part, Signcryption of
the message is done.

Fig 7: Process of Encrypting and authentication data during

processor-processor data transfer over network
Once the receiver receives the values sent by the sender, then
receiver uses the values of r and s, his/her private key SKb,
sender’s public key PK and P and G to compute a hash which
would give receiver a 128-bit result.

Fig 8: Process of verify authentication and decryption of

Data once the data is received by the receiver

Md. Shafakhatullah Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4104-4110

www.ijcsit.com 4109

This 128-bit hash result is then split into two 64-bit halves
which would give him/her a key pair (KEY1, KEY2). This key
pair would be identical to the key pair that was generated while
signcrypting the message. Now receiver system does a
one-way keyed hash function on ciphertext using the key
KEY2 and compares the output with the value r receiver
received from sender. If they match, it means that the data was
indeed signed and sent by sender, if not receiver will know that
the message was either not signed by sender or was intercepted
and modified by an intruder.

VI. CONCLUSION
This proposed system is to provide a good, efficient method

for providing security for Distributed Shared Memory data
from hackers and sent to the destination in a safe manner.
Signcryption and Unsigncryption techniques have been used
to make the security system more sophisticated and robust.

REFERENCES
[1] B. Rogers, M. Prvulovic, and Y. Solihin. Efficient data protection for

distributed shared memory multiprocessors. In 15th International
Conference on Parallel Architecture and Compi- lation Techniques
(PACT 2006). ACM, 2006.

[2] R. Anderson. Why cryptosystems fail. In Proceedings of the 1st Conf.
Computer and Communications Security (CCS ’93), pages 215–227,
1993.

[3] R. K. B. Yang, S. Mishra. A high speed architecture for galois/counter
mode of operation (gcm). In Cryptology ePrint Archive: Report
2005/146, 2005.

[4] D. Bartholomew. On Demand Computing–IT On Tap?
http://www.industryweek.com/ReadArticle.aspx?ArticleID=10303&Se
ctionID=4,June2005

[5] B. Gassend, G. Suh, D. Clarke, M. Dijk, and S. Devadas. Caches and
Hash Trees for Efficient Memory Integrity Verification. In Proc of the
9th International Symposium on High Performance Computer
Architecture (HPCA-9), 2003.

[6] T. Gilmont, J.-D. Legat, and J.-J. Quisquater. Enhanc- ing the Security in
the Memory Management Unit. In Proc. of the 25th EuroMicro
Conference, 1999.

[7] A. Huang. Hacking the Xbox: An Introduction to Re- verse Engineering.
No Starch Press, San Francisco, CA, 2003.

[8] A. B. Huang. The Trusted PC: Skin-Deep Security. IEEE Computer,
35(10):103–105, 2002.

[9] IBM. IBM Power4 System Architecture White Paper.
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/p
ower4.html, 2002.

[10] J. Renau, et al. SESC. http://sesc.sourceforge.net, 2004.
[11] T. Kgil, L. Falk, and T. Mudge. ChipLock: Support for Secure

Microarchitectures. In Proceedings of the Work- shop on Architectural
Support for Security and Anti- Virus (WASSA), Oct. 2004.

[12] D. Lie, J. Mitchell, C. Thekkath, and M. Horowitz. Specifying and
Verifying Hardware for Tamper- Re- sistant Software. In IEEE
Symposium on Security and Privacy, 2003.

[13] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. MItchell, and
M. Horowitz. Architectural Support for Copy and Tamper Resistant
Software. In Proc. of the 9th International Conference on Architectural
Sup- port for Programming Languages and Operating Sys- tems, 2000.

[14] D. A. McGrew and J. Viega. The Galois/Counter Mode of Operation
(GCM). http://csrc.nist.gov/ Cryp-
toToolkit/modes/proposedmodes/gcm/, 2004.

[15] T. Olavsrud. HP Issues Battle Cry in High-End Unix Server Market.
ServerWatch, http://www.serverwatch. com/news/article.php/1399451,
2000.

[16] W. Shi, H.-H. Lee, M. Ghosh, and C. Lu. Architec- tural Support for
High Speed Protection of Memory Integrity and Confidentiality in

Multiprocessor Systems. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, pages 123–134,
September 2004.

[17] W. Shi, H.-H. Lee, M. Ghosh, C. Lu, and A. Boldyreva. High Efficiency
Counter Mode Security Architecture via Prediction and Precomputation.
In Proceedings of the 32nd International Symposium on Computer
Archi- tecture, June 2005.

[18] W. Shi, H.-H. Lee, C. Lu, and M. Ghosh. Towards the Issues in
Architectural Support for Protection of Software Execution. In
Proceedings of the Workshop on Architectureal Support for Security and
Anti-virus, pages 1–10, October 2004.

[19] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An inte- grated cache timing,
power, and area model. In Tech- nical Report WRL Technical Report
2001/2. Compaq Western Research Laboratory, Aug 2001.

[20] Silicon Graphics, Inc. SGI Altix 3000 Data Sheet.
http://www.sgi.com/products/servers/altix, 2004.

[21] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Efficient
Memory Integrity Verification and Encryption for Secure Processor. In
Proc. of the 36th Annual International Symposium on Microarchitecture,
2003.

[22] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The splash-2
programs: characterization and method- ological considerations. In
Proceedings of the 22nd International Symposium on Computer
Architecture, pages 24–36, 1995.

[23] C. Yan, B. Rogers, D. Englender, Y. Solihin, and M. Prvulovic.
Improving cost, performance, and secu- rity of memory encryption and
authentication. In Proc. of the International Symposium on Computer
Architec- ture, 2006.

[24] J. Yang, Y. Zhang, and L. Gao. Fast Secure Proces- sor for Inhibiting
Software Piracy and Tampering. In Proc. of the 36th Annual
International Symposium on Microarchitecture, 2003.

[25] Y. Zhang, L. Gao, J. Yang, X. Zhang, and R. Gupta. SENSS: Security
Enhancement to Symmetric Shared Memory Multiprocessors. In
International Symposium on High-Performance Computer Architecture,
February 2005.

[26] A. Carroll, M. Juarez, J. Polk, and T. Leininger. Microsoft “Palladium”:
A Business Overview. In Microsoft Content Security Business Unit,
August 2002.

[27] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon Physical
Random Functions . In Proceedings of the Computer and
Communication Security Conference, May 2002.

[28] S. W. Smith and S. H. Weingart. Building a High- Performance,
Programmable Secure Coprocessor. In Com- puter Networks (Special
Issue on Computer Network Secu- rity), volume 31, pages 831–860,
April 1999.

[29] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS:
Architecture for tamper-evident and tamper-resistant processing. In
Proceedings of the 17th Int’l Conference on Supercomputing, June 2003.

[30] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang.
Architecture for protecting critical secrets in micro- processors. In 32nd
Annual International Symposium on Computer Architecture (ISCA’05),
pages 2–13, 2005.

[31] Yuliang Zheng, “Digital Signcryption or How to Achieve
Cost(Signature & Encryption) << Cost(Signature) + Cost(Encryption)”,
CRYPTO ’97 Proceedings of the 17th Annual International Cryptology
Conference on Advances in Cryptology Springer-Verlag London, UK
1997, Page no: 165-179

[32] J. Baek, R. Steinfeld and Y. Zheng: Formal Proofs for the Security of
Signcryption, Proceedings of Public Key Cryptography 2002 (PKC
2002), Vol. 2274 of LNCS, Springer- Verlag 2002, pages 80-98.

[33] J. Baek, R. Steinfeld and Y. Zheng: Formal Proofs for the Security of
Signcryption, A full version, Submitted to Jornal of Cryptology. A draft
is available upon request to the authors.

[34] Joonsang Baek and Yuliang Zheng, “Description of Provably Secure
Signcryption Schemes”,
http://www.signcryption.org/publications/pdffiles/yz-baek-sc-descriptio
n-02.pdf, Aug 2002.

Md. Shafakhatullah Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4104-4110

www.ijcsit.com 4110

